Zur Energiedelle des orthogonalen Trimethylenmethans. – 1-Methylen-2-phenylcyclopropan-Thermolyse

Wolfgang R. Roth **, Markus Winzer*, Hans-Werner Lennartz* und Roland Boeseb

Fakultät für Chemie der Universität Bochum^a, Postfach 102148, D-44780 Bochum

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen^b, Universitätsstraße 5-7, D-45117 Essen

Eingegangen am 9. August 1993

Key Words: Diradicals / Oxygen trapping / Energy well / Heat of formation / Heat of hydrogenation

Energy Well of the Orthogonal Trimethylenemethane. - 1-Methylene-2-phenylcyclopropane Thermolysis

From the heat of hydrogenation of 5, the activation enthalpy for the racemization of the title compound, and the oxygen dependance of the trapping rate of the intermediate diradical 8 the energy profile for the degenerate methylene-cyclopro-

Die unter Inversion des wandernden Kohlenstoffs verlaufende Feistester-Umlagerung^[1] war von Woodward und Hoffmann^[2] als Beispiel einer konzertierten, 1,3-sigmatropen Reaktion ($\sigma_a^2 + \pi_s^2$) diskutiert worden. Diese Vorstellung wurde später von Doering^[3] aufgrund einer vollständigen stereochemischen Analyse der Methylencyclopropan-Umlagerung des 3-Methyl-2-cyano-ethylidencyclopropans zugunsten eines nichtkonzertierten Mechanismus korrigiert und die beobachtete Stereochemie der Reaktion ($1 \rightarrow 3$) als Ausdruck eines konfigurativ stabilen orthogonalen Trimethylenmethan-Diradikals 2 gedeutet.

Diese Interpretation steht im Einklang mit quantenmechanischen Rechnungen^[4], die beim Grundkörper für den Singulett-Zustand eine deutliche Bevorzugung der orthogonalen gegenüber der planaren Geometrie anzeigen, während für den Triplett-Zustand in Übereinstimmung mit ESR-Messungen^[5] eine energetisch sehr viel tiefer liegende, planare Anordnung berechnet wird (s. Tab. 1).

Wenn am nichtkonzertierten Charakter der Methylencyclopropan-Umlagerung heute auch keine Zweifel mehr bestehen, bleibt die Rolle des intermediären Diradikals 2 unklar. Haben wir es mit einem echten Intermediat zu tun, das sich in einer endlichen Energiedelle befindet, oder ist 2 nur ein Übergangszustand ("diradical as transition state") analog dem, der bei der geometrischen Isomerisierung von Olefinen durchlaufen wird? Die Klärung dieser Frage ist das Ziel der vorliegenden Arbeit, wobei als Substrat 1-Methylen-2-phenylcyclopropan (5)^[6] gewählt wurde. pane rearrangement can be constructed, which leads to heats of formation for the triplet and singlet state of the diradical **8** of $\Delta H_I^0 \cdot 93.9$ and 95.6 kcal mol⁻¹, respectively.

Tab. 1. Elektronenzustände des Trimethylenmethans^[4]

нН		Relative Energien [kcal/mol]
н	$\uparrow\uparrow$	0.0
	↑↓	15.2
	î↓	21.2

1. Thermolysen

Beim Erhitzen von 5 erfolgt in der Gasphase bei Temperaturen um 160 °C eine Umlagerung zu 4, die bei höheren Temperaturen in ein Gleichgewicht übergeht, aus dem oberhalb von 200 °C langsam eine irreversible Umlagerung zu einem Gemisch aus 6 und 7 stattfindet.

Schema 1

Die in der Gasphase zwischen 160 und 280°C ermittelten Geschwindigkeitskonstanten erster Ordnung zeigen eine Temperaturabhängigkeit, die sich durch die Arrhenius-Gleichungen (1), (2) und (3) beschreiben lassen, wobei die Feh-

Chem. Ber. 1993, 126, 2717-2725 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993 0009-2940/93/1212-2717 \$ 10.00+.25/0

2717

wurde. Das alternative Reaktions-Schema, bei dem 6 bzw. 7 ausgehend von 4 gebildet werden, kann aufgrund der kinetischen Daten nicht ausgeschlossen werden und läßt sich mit vergleichbarer Fehlergrenze an die experimentellen Daten anpassen.

$k_{5,4} = (8.71 \pm 3.04) \cdot 10^{13} \cdot \exp[-(38.24 \pm 0.28) \text{ kcal}/RT] \text{ s}^{-1}$	(1)
$k_{4,5} = (6.31 \pm 1.63) \cdot 1.63) \cdot 10^{13} \cdot \exp\left[-(39.25 \pm 0.22) \text{ kcal}/RT\right] \text{ s}^{-1}$	(2)
$k_{5,6+7} = (3.39 + 1.18) \cdot 10^{13} \cdot \exp[-(40.11 + 0.25) \text{ kcal}/RT] \text{ s}^{-1}$	(3

Der Enthalpie-Unterschied zwischen 4 und 5 von nur 1 kcal mol⁻¹ (s. Tab. 4) ist auf den ersten Blick überraschend, findet jedoch eine Erklärung, wenn man die Bildungsenthalpien von Phenylcyclopropan und Styrol ($\Delta H_f^0 = 35.97$ bzw. 35.30 kcal mol^{-1[8]}) miteinander vergleicht. Die Reaktionsenthalpien für die Substitution des Benzols mit einer Vinylgruppe und einem Dreiring unterscheiden sich aufgrund dieser Werte um nur 0.4 kcal mol^{-1[9]}, was bedeutet, daß die konjugative Stabilisierung zwischen Phenylgruppe und Dreiring der zwischen Phenylgruppe und Doppelbindung vergleichbar ist.

Der wechselseitigen Umlagerung $5 \Leftrightarrow 4$ ist die Racemisierung des Substrates ($5a \Leftrightarrow 5b$) vorgelagert, bei der das Diradikal 8 durchlaufen werden sollte.

Die Enantiomeren-Trennung von 5 gelang chromatographisch (HPLC) auf eine Cellulose-Triacetat-Säule. Die optische Reinheit konnte gaschromatographisch an einer perpentylierten β -Cyclodextrin-Säule zu 49.1 ee bestimmt werden^[10]. Die Racemisierungsgeschwindigkeit wurde bei sechs Temperaturen zwischen 70 und 120°C ermittelt, wobei der Reaktionsverlauf gaschromatographisch verfolgt wurde (perpentylierte Cyclodextrin-Säule). Die Temperaturabhängigkeit der in Tab. 2 aufgelisteten Geschwindigkeitskonstanten läßt sich durch die Arrhenius-Gleichung (4) beschreiben, wobei die Fehlerangaben sich wieder auf eine Vertrauensgrenze von 95% beziehen. Die hieraus abgeleiteten Aktivierungsparameter finden sich in Tab. 4.

$$k_{5a,5b} = (0.73 \pm 0.20) \cdot 10^{13} \cdot \exp\left[-(28.24 \pm 0.19) \,\text{kcal/}RT\right] \,\text{s}^{-1} \quad (4)$$

Tab. 2. Geschwindigkeitskonstanten der Racemisierung von 5

T [°C]	70 .7	81.1	89.9	98.4	109.4	118.7
k5a,5b · 10 ⁵ [s ⁻¹]	0.831	2.794	7.309	18.22	53.45	132.1

2. Sauerstoff-Abfang-Versuche

Wird die Gasphasen-Thermolyse von 5 in Gegenwart von Sauerstoff durchgeführt, dann kommt es neben den Umlagerungen zu 4 bzw. 6 und 7 zur Bildung von Peroxiden, wobei die Geschwindigkeit dieser Reaktion bei hohen Sauerstoffmengen streng proportional zur Sauerstoffkonzentration ist (s. Abb. 1 oben). Da die Geschwindigkeit der Isomerisierung $5 \rightarrow 4$ bzw. $5 \rightarrow 6 + 7$ sauerstoffunabhängig und sehr viel langsamer als die Peroxidbildung ist, wird damit nahegelegt, daß die Abfangreaktion über das Diradikal 8 erfolgt.

Abb. 1. Sauerstoffabhängigkeit der Geschwindigkeit der Peroxidbildung bei der Gasphasen-Thermolyse von 5 in Gegenwart von Sauerstoff (oben: hoher Druckbereich; unten: niedriger Druckbereich)

In Analogie zu der Abfang-Kinetik anderer kurzlebiger Diradikale^[11] läßt sich der in Abb. 1 gezeigte nichtlineare Verlauf der Peroxidbildung als Ausdruck konkurrierender Abfangreaktionen des Triplett-(**8t**) bzw. Singulett-Diradikals (**8s**) interpretieren. Beide Spin-Isomeren reagieren mit Sauerstoff, wobei jedoch der Triplett-Anteil durch die Intersystem-Crossing-Geschwindigkeit ($k_{8s,8t}$) begrenzt wird. Bei hohen Sauerstoffkonzentrationen, wo ein quantitativer Abfang der Triplett-Diradikale erfolgt, beobachten wir entsprechend eine lineare Abhängigkeit der Peroxidbildung von der Sauerstoffkonzentration (s. Abb. 1 oben), wobei der Anstieg der Geraden jetzt die Abfanggeschwindigkeit des Singuletts beschreibt. Bei sehr kleinen Sauerstoffkonzentra-eingestellt, und entsprechend beobachten wir hier einen sehr viel steileren Anstieg der Peroxidkurve (s. Abb. 1 unten). Der Achsenabschnitt beschreibt hier die Abnahme des Substrates durch die Umlagerung in 4 bzw. 6 und 7. Aus der Differenz aus Achsenabschnitt und dem extrapolierten linearen Kurvenast leitet sich die ISC-Geschwindigkeit $k_{8s,8t}$ und aus dem graduellen Übergang des nichtlinearen in den linearen Teil der Abfangkurve die Geschwindigkeit k_{8t.8s} ab. Mit größer werdender Singulett \Rightarrow Triplett-Aufspaltung wird das Abknicken der Abfangkurve zu immer kleineren Sauerstoffkonzentrationen verschoben und wird im Extremfall zu einem Achsenabschnitt, so beim planaren Trimethylenmethan^[12].

Schema 2

Die Auswertung der Abfang-Experimente erfolgte in der Weise, daß der nach Schema 2 simulierte Reaktionsverlauf an die in Tab. 7 zusammengestellten Daten angepaßt wurde, wobei für die Geschwindigkeit der Peroxidbildung als stoßkontrollierte Reaktion ein Wert von $k_s = 5.5 \cdot 10^8 - 1/T^{[13]}$ und für die Bildung des Diradikals der aus der Racemisierungsgeschwindigkeit abgeleitete Wert von $k_{5.8s} = 2 \cdot k_{5a,5b}$ (s. Kap. 1) gesetzt wurde. Im Hinblick auf die Annahmen, die bei der Abschätzung von k_s gemacht wurden, sind die so ermittelten Absolutwerte der Geschwindigkeitskonstanten k_{8s,5}, k_{8s,8t} und k_{8t,8s} mit größeren Unsicherheits-Intervallen behaftet. Als stoßkontrollierte Reaktion ist die Temperaturabhängigkeit der Peroxidbildung jedoch durch eine Wurzel-Beziehung eindeutig gegeben, so daß die aus der Temperaturabhängigkeit der Geschwindigkeitskonstanten $k_{8s,5}, k_{8s,8t}$ und $k_{8t,8s}$ abgeleiteten Aktivierungsenergien und die hierdurch sich ergebende Energiedelle des Diradikals korrekt beschrieben werden sollten. Die angegebenen Fehler wurden durch eine Signifikanzanalyse^[16] ermittelt und beziehen sich auf eine Vertrauensgrenze von 95%. Die aus der Arrhenius-Gleichung (5) abgeleiteten Aktivierungsparameter sind in Tab. 4 zusammengestellt, wobei im Hinblick auf die Unsicherheit von k_s sinnvolle Fehlerangaben nur für die E_{a} - bzw. ΔH^{\pm} -Werte möglich sind. Für die Gleichungen (6) und (7) ist die Berechnung von Aktivierungsenthalpien wegen der Annäherung an RT nicht mehr sinnvoll^[17].

$$k_{8s,5} = 6.61 \cdot 10^{12} \cdot \exp\left[-(3.6 \pm 0.5) \,\text{kcal}/RT\right] \,\text{s}^{-1}$$
 (5)

$$k_{8s,8t} = 8.52 \cdot 10^{7} \cdot \exp\left[-(0.2 \pm 0.2) \,\mathrm{kcal/RT}\right] \mathrm{s}^{-1} \tag{6}$$

$$k_{8t,8s} = 8.78 \cdot 10^{7} \cdot \exp\left[-(1.9 \pm 0.3) \,\text{kcal/RT}\right] \,\text{s}^{-1} \tag{7}$$

3. Diskussion

Für die Kalibrierung des Energieprofils der Umlagerung von 5 wird die Bildungsenthalpie von einer der Gleichgewichtskomponenten benötigt. Wir haben hierzu die Hydrierwärme von 5 im Isooctan an einem Pd/C-Katalysator nach dem in Lit.^[18] beschriebenen Verfahren bestimmt. Die Ergebnisse der einzelnen Messungen sind in Tab. 8 aufgelistet. Mit der hieraus abgeleiteten Bildungsenthalpie $\Delta H_1^{0}(5)$ = 70.9 kcal mol^{-1[19]} und den Aktivierungsparametern der Tab. 4 resultiert das in Abb. 2 dargestellte Energieprofil.

Abb. 2. Energieprofil [kcal mol⁻¹] der Thermolyse von 5

Die experimentelle Bildungsenthalpie von 5 wird vom MM-2ERW-Kraftfeld^[8] sehr befriedigend reproduziert (ΔH_f^0 : exp. = 70.9, ber. = 70.83 kcal mol⁻¹). Wie die Kristallstruktur (s. Abb. 3) zeigt, befindet sich die Phenylgruppe in einer *syn-anti*-Konformation in bezug auf den Dreiring, obwohl nichtbindende Wechselwirkungen eine hierzu senkrechte Anordnung begünstigen würden. Der Grund für die abweichende Geometrie dürfte in der π -Wechselwirkung zwischen Phenyl- und Dreiring liegen, die nur in der *syn-anti*-Konformation möglich ist und auch vom Kraftfeld als die Minimum-Geometrie ausgewiesen wird.

Für das Umlagerungsprodukt 4 resultiert aus dem Energieprofil in Abb. 2 eine Bildungsenthalpie von $\Delta H_f^0 = 69.9$ kcal mol⁻¹, der ein Kraftfeldwert (MM-2ERW^[8]) von 69.77 kcal mol⁻¹ gegenübersteht. Abweichend von *cis*-Methylstyrol zeigt das Kraftfeld in Übereinstimmung mit der Kristallstruktur (s. Abb. 3) eine praktisch planare Anordnung von Phenyl- und Dreiring an. 2720

4: Bindungslängen [Å]: C(1) - C(2) 1.324 (2), C(1) - C(5) 1.471 (2), C(2) - C(3) 1.465 (2), C(2) - C(4) 1.464 (2), C(3) - C(4) 1.540 (2), C(6) - C(7) 1.388 (2), C(6) - C(5) 1.405 (1), C(7) - C(8) 1.391 (2), C(8) - C(9) 1.385 (1), C(9) - C(10) 1.387 (2), C(10) - C(5) 1.400 (2). Bindingswinkel [°]: C(2)-C(1)-C(5) 125 (1), C(1)-C(2)-C(3) 1437 (1), C(1)-C(2)-C(4) 147.8 (1), C(3)-C(2)-C(4) 120.7 (1), C(7)-C(8)-C(9) 119.3 (1), C(8)-C(9)-C(10) 120.3 (1), C(9)-C(10)-C(5) 121.2 (1), C(1)-C(5)-C(4) 123.0 (1), C(1)-C(5)-C(4) 123.0 (1), C(3)-C(2)-C(4) 123.0 (1), C(3)-C(3)-C(3) 2.5.

5: Bindungslängen [Å]: C(1) - C(2) 1.308 (5), C(2) - C(3) 1.461 (5), C(2) - C(4) 1.481 (5), C(3) - C(4) 1.546 (5), C(4) - C(5) 1.499 (5), C(5) - C(6) 1.382 (5), C(5) - C(10) 1.382 (5), C(6) - C(7) 1.382 (6), C(7) - C(8) 1.276 (6), C(8) - C (9) 1.377 (6), C(9) - C(10) 1.382 (5). Bindungswinkel [°]: C(1)-C(2)-C(3) 150.8 (3), C(1)-C(2)-C(4) 145.8 (3), C(3)-C(2)-C(4) 63.4 (2), C(2)-C(3) 50.8 (3), C(1)-C(2)-C(4) 145.8 (3), C(3)-C(2)-C(4) 63.4 (2), C(2)-C(3) 50.8 (3), C(1)-C(2)-C(4) 145.8 (3), C(3)-C(4)-C(5) 122.4 (3), C(3)-C(4)-C(5) 122.6 (3), C(4)-C(5)-C(10) 119.0 (3), C(6)-C(5)-C(10) 118.3 (3), C(5)-C(6)-C(1) 120.7 (4), C(6)-C(7)-C(8) 120.7 (4), C(5)-C(10) 120.7 (4), C(5)-C(10)-C(4)-C(5)-C(10) 120.7 (4), C(5)-C(10)-C(4)-C(5)-C(10) -C(4)-C(5)-C(10) 21.7 (4), C(5)-C(6)-24.39, C(3)-C(4)-C(5)-C(6) 21.1.

Abb. 3. Kristallstrukturen von 4 und 5

Tab. 3. Erwartungswerte für die Bildungsenthalpie [kcal mol⁻¹] des Diradikals 8

	exp.	C-H-	MM-EV	BH-[25]	AM	[26]
	diese Arbeit	Dissoziation	φ = 45°	φ = 90°	φ = 45°	φ = 90°
ΔH_f^0 Singulett	95.6	93.02[21]	99.55	90.10	106.81	93.32
ΔH_f^0 Triplett	93.9		88.46	92.40	94.32	92.71

Für die Diradikale **8t** und **8s** ergeben sich nach dem Energieprofil in Abb. 2 Bildungsenthalpien $\Delta H_1^0 = 93.9$ bzw. 95.6 kcal mol⁻¹, denen in Tab. 4 theoretische Erwartungswerte gegenübergestellt sind. Qualitativ läßt sich die Bildungsenthalpie des Diradikals **8** bereits mit der einfachen C-H-Dissoziations-Methode^[20] gut abschätzen. Das durch die orthogonale Anordnung nahegelegte Bild von einem nicht miteinander wechselwirkenden Benzyl- und Allyl-Radikal beschreibt das Diradikal **8** augenscheinlich sehr befriedigend.

Tab. 4. Aktivierungsparameter für die Umlagerungsreaktionen von 5

Packtion	Ea	log A	ΔH^{\ddagger}	ΔS^{\ddagger}
Reaktion	[kcal mol ⁻¹]	IUE A	[kcal mol ⁻¹]	[cal mol ⁻¹ K ⁻¹]
5a →5b	28.24±0.19	12.86±0.08	27.51±0.19	- 2.08±0.39
$5 \rightarrow 4$	38.24±0.28	13.94±0.13	37.39±0.28	2.56±0.59
$4 \rightarrow 5$	39.25±0.22	13.80±0.10	38.42±0.22	5.94±0.44
	40.11±0.25	13.53±0.13	39.11±0.25	4.32±0.59
5 → 0+/	3.6±0.5	12.82	2.8 ± 0.5	1.32
$8s \rightarrow 5$	0.2±0.2	6.94		
8s → 8t	1.9±0.3	7.94		
$8t \rightarrow 8s$	1.52.00			

Die mit der MM-EVBH- oder der AM1-Methode berechneten Bildungsenthalpien für das Diradikal 8 zeigen eine ausgeprägte Abhängigkeit von dem Torsionswinkel zwischen der Phenylgruppe und dem Dreiring. Im Hinblick auf die ungewisse Geometrie des Diradikals erscheint die Übereinstimmung akzeptabel.

Im Gegensatz zu der Racemisierung ($5a \Leftrightarrow 5b$) wird die Umlagerung $5 \rightarrow 4$ durch Sauerstoff nicht beeinflußt. Damit wird zwingend demonstriert, daß diese Reaktion nicht über das Intermediat 8 erfolgt. Wenn das Einschwenken der Phenylgruppe in die Ebene des Dreirings aber bereits im Primärschritt der Umlagerung stattfindet, haben wir zwei Fälle zu diskutieren, die Rotation in Richtung auf die exocyclische Doppelbindung (a), und die im entgegengesetzten Sinn (b) (s. Schema 3).

Im ersten Fall (a) kann es aus sterischen Gründen nicht zur Ausbildung eines orthogonalen Diradikals vom Typ 2 kommen. Mit dem Einschwenken der Phenylgruppe in die Ringebene wird die ehemals exocyclische Methylengruppe zwangsläufig aus der Molekülebene gedrängt. Das hierbei gebildete bis-orthogonale Diradikal 10 hat die Geometrie eines schwingungsmäßig angeregten Umlagerungsproduktes 4 und sollte daher nicht als Intermediat fungieren können. Als konzertierter Prozeß ist diese Reaktion auf der anderen Seite aufgrund der Orbitalsymmetrie verboten ($\sigma_a^2 + \pi_a^2$).

Die Rotation im umgekehrten Sinn (b) führt zu einem orthogonalen Trimethylenmethan-Diradikal 9, von dem wir erwarten sollten, daß es in Analogie zum Diradikal 8 durch Sauerstoff abgefangen wird. Wenn trotzdem die Bildung von 4 durch Sauerstoff nicht meßbar verlangsamt wird, wird damit die Bildung von 9 nicht ausgeschlossen. Im Gegensatz zu 8 ist die Bildung von 9 bei der Temperatur der Abfangreaktion (150-190°C) noch nicht reversibel, so daß der abfangbare Anteil auf ca. $k_s[O_2]/k_{8s,5} \approx 3 \cdot 10^{-3}$ zu veranschlagen ist, der weit unter dem der experimentellen Nachweisgrenze bleibt. Geht man mit der Abfangreaktion in einen Temperaturbereich, wo 9 reversibel gebildet wird, dann verhindert die sehr viel größere Gleichgewichtskonzentration von 8 eine Analyse der Abfangreaktion von 9.

Wenn in der Tat die Bildung von 4 über das intermediäre Diradikal 9 erfolgt, wird die kinetische Benachteiligung der Umlagerung $5 \rightarrow 4$ gegenüber der Racemisierung ($5a \Leftrightarrow 5b$) verständlich. Die in 8 vorhandene Benzylstabilisierung von 10.5 kcal mol^{-1[24]} wird in 9 gegen die Differenz aus Cinnamyl- und Allylstabilisierung ($17.4^{(27)}-13.5 = 3.9$ kcal mol⁻¹) eingetauscht. Die hieraus resultierende Destabilisierung von 9 gegenüber 8 von $\Delta E = 8.6$ kcal mol⁻¹ kommt dem Unterschied der Aktivierungsenthalpien der korrespondierenden Reaktionen [$\Delta H^{+}(5 \rightarrow 8) - \Delta H^{+}(5a \Leftrightarrow$ 5b) = 37.4-27.6 = 9.8 kcal mol⁻¹] nahe.

Eine Stütze für den obigen Mechanismus der Umlagerung $5 \rightarrow 4$ ergibt sich durch den Vergleich mit der analogen Reaktion des Diphenyl-Derivats 11^[28]. Die entartete Umlagerung 11a \Leftrightarrow 11b erfährt hier dank der Stabilisierung von 12 durch die Benzhydrylgruppe eine deutliche Beschleunigung gegenüber der Racemisierung von 5 $[\Delta H^+(11a \rightarrow 11b) = 22.1^{[28]}$ vs. $\Delta H^+(5a \rightarrow 5b) = 27.51$ kcal mol⁻¹]. Auf der anderen Seite wird die Umlagerung in das thermodynamisch stabilere Isomere 14 auch unter drastischen Bedingungen nicht beobachtet^[28]. Das Einschwenken der geminalen Diphenylgruppe in die Ringebene würde unabhängig von der Rotationsrichtung die Generierung des bisorthogonalen Diradikals 13 erzwingen, was einer symmetrieverbotenen, konzertierten Reaktion ($\sigma_a^2 + \pi_a^2$) gleichkäme.

Über die Bildung von 6 + 7 kann keine definitive Aussage gemacht werden. Wie die bei 190°C durchgeführten Sauerstoff-Abfangversuche andeuten, wird ihre Bildungsgeschwindigkeit durch Sauerstoff nicht verlangsamt. Damit

dürfte 8 als Vorläufer ausscheiden, und es wird 9 als Intermediat nahegelegt.

Tab.	5.	Relative ^[a]	Energien	[kcal	mol^{-1}]	des	orthogonalen	Tri-
			meth	nylenm	nethans			

	Mindo/2[29]	HF[30]	GVB-CI ^[31]
Triplett	9	16.9	18.2
Singulett	12	18.5	20.2

^[a] Auf die Energie des planaren Triplett-Diradikals bezogen.

Tab. 6. Daten der Thermolyse von 5

Temp	Zeit	5	4	6+7	Тетр	Zeit	5	4	6+7
IPC1	[5]	[%]	[%]	1%1	(°C)	[s]	[%]	[%]	[%]
150.66	1000	00.85	0.15	0.00	210 73	800	71.55	27 17	1.28
150.00	31700	95.03	4 78	0.00	210.75	2400	38.77	57.82	3.41
	59500	90.84	8 72	0.44		4800	22.92	71.83	5.25
	84800	86.51	12.82	0.67		6700	19.47	74.26	6.27
	118600	82.61	17.31	0.09		10100	17.10	75.06	7.84
	146300	78.18	20.77	1.06		11300	17.08	74.57	8.35
	177000	74.09	24.63	1.27					
					221.19	800	47.99	49.33	2.67
150.66	1500	99.70	0.30	0.00		1700	26.93	68.41	4.66
	28500	95.56	4.24	0.20		2600	20.55	73.57	5.88
	63800	90.15	9.31	0.54		3500	19.14	73.90	6.97
	91000	86.06	13.10	0.85		4400	17.98	74.07	7.95
	156000	77.51	21.21	1.28		5300	17.15	73.90	8.94
	248000	00.22	31.08	2.11		0200	17.45	72.09	9.80
159:87	900	99.61	0.39	0.00	221.19	600	56.98	40.89	2.13
	8000	96.69	3.16	0.15		1200	34.67	61.53	3.81
	15500	93.65	6.13	0.22		1800	25.59	69.44	4.97
	22800	90.48	9.21	0.31		2400	21.09	73.10	5.81
	32200	86.77	12.80	0.43		3000	19.60	73. 87	6.53
	38800	83.91	15.52	0.57		3600	18.70	74.07	7.23
	50000	80.02	19.27	0.71		4200	17.90	74.23	7.87
160.07	000	00.61	0.30	0.00	220 76	400	45 77	\$0.82	3.41
159.87	900	99.01	1.79	0.00	230.70	1000	24 40	50.82 60.46	6 14
	22000	98.14	1.76	0.06		1500	24.40	71 95	7 71
	23900	60.70	28.60	1 70		2000	19.27	71 545	9 18
	00500	64 78	33 23	1 99	l	2600	19 64	70.02	10.53
	111000	62.49	35 37	2 13		2000	17.09	70.95	11.35
						3500	17.88	69.04	13.07
171.18	700	98.99	1.01	0.00		6700	15 01	63.23	20.86
	3600	95.58	4.22	0.19	1	0700	15.91	QJ.25	20.00
	8700	89.40	9.98	0.63	250.78	800	22.37	65.67	11.96
	28700	67.76	30.31	1.93		3200	14.33	50.32	35.35
	39700	58.97	38.50	2.53		4400	12.15	43.01	44.84
	52600	49.40	47.41	3.19		5600	10.41	36.76	52.83
						6900	8.55	31.20	60.25
181.00	1000	96.95	2.87	0.19		7800	7.52	27.68	64.80
	9000	74.40	24.09	1.51		9000	6.67	23.04	70.29
	15000	60.68	36.92	2.39					
	18200	54.99	42.22	2.80	260.64	600	21.03	62.14	16.84
	21800	48.53	48.10	3.31		2000	13.02	44.61	42.38
	20800	41.82	54.42	3.70	1	2700	10.69	37.16	52.15
101.01	700	04.15	5 51	0 33	1	3400	8.97	30.75	60.28
191.01	1000	85.50	13.78	0.55		4100	7.29	23.04	07.07
	3900	72 27	26.26	1 47		5500 8400	4.91	17.01	90.00
	6100	60.36	37.51	2.13		11000	2.30	3.61	95.05
	8300	50.36	46.93	2.71		15200	0.43	1.50	98.07
	10400	42.88	53.90	3.22		18900	0.20	0.74	99.06
	12600	37.21	59.05	3.74		10,00	0.20	••••	,,,,,,
					261.19	800	21.14	57.92	20.94
200.77	800	85.72	13.66	0.61	1	2100	12.92	42.48	44.60
	3000	57.10	40.68	2.22		3400	8.74	29.85	61.4
	4300	45.00	51.99	3.01		4000	7.52	25.15	67.3
	5800	35.39	67.60	3.72		4600	6.22	21.41	72.3
	7700	28.00	07.39	4.41	0.001.14		21.21	e 4 0 4	22.04
200 72	1000	83.60	15 67	0.73	2/1.1	5 500	21.21	34.84	23.90
200.72	3000	57.59	40.23	2.18		2000	7 76	25.75	66.40
	5300	39.73	56.90	3.37	1	2500	5.72	19.88	74.4
	7700	28.64	67.02	4.34		3000	4.45	14.85	80.69
						3500	3.30	11.43	85.2
210.73	800	70.95	27.74	1.32	1	4000	2.54	8.72	88.7
	2000	43.90	53.01	3.09	1				
	3200	30.13	65.59	4.27	280.8	400	17.91	48.82	33.2
	4400	23.43	71.39	5.18		1900	3.50	11.47	85.0
	5600	19.94	74.23	5.83	1	2400	2.13	7.16	90.7
	6800	18.42	75.13	6.45	1	2900	1.29	4.40	94.3
					1	3400	0.78	2.64	96.5
					1	3900	0.47	1.55	97.9
					1	4600	0.25	0.95	98.8

Wie die Abfangversuche mit Sauerstoff zeigen, ist das orthogonale Diradikal **8** ein echtes Intermediat, dem ein Triplett-Grundzustand mit einem 1.7 kcal mol⁻¹ höher liegenden Singulett-Zustand zugesprochen werden muß. Die hier beobachtete Singulett \rightleftharpoons Triplett-Aufspaltung entspricht den theoretischen Erwartungen. Wie Tab. 5 zeigt, wird beim Grundkörper für das orthogonale Trimethylenmethan ein Triplett-Grundzustand mit einem ca. 2 kcal mol^{-1} höher liegenden Singulett berechnet.

Die Stereospezifität der Methylencyclopropan-Umlagerung findet seine Erklärung in der konformativen Stabilität des intermediären orthogonalen Trimethylenmethans. Diese Stabilität ist für den Singulett-Zustand im Hinblick auf die Energieabstufung der Tab. 1 unmittelbar verständlich. Die

Tab. 7. Daten der Thermolyse von 5 (jeweils ca. $1 \cdot 10^{-6}$ mol 1^{-1}) in Gegenwart von Sauerstoff

Temp	Sauerstoff	Zeit	5	4	6 + 7	Temp	Sauerstoff	Zeit	5	4	0 + 7	Temp	Sauerstoff	Zeit	5	4	6 + 7
[C°]	[moi • l ⁻¹]	[5]	[%]	[%]	(%)	[C°]	[mol • i ⁻¹]	[8]	[%]	[%]	[%]	[C°]	[mol • l ⁻¹]	[8]	[%]	[%]	[%]
150.66	0.02839	0	99.82	81.0	0.00	150.61	0.000039	0	99.84	0.16	0.00	159.87	0.000864	0	99.50	0.50	0.00
		3600	64.44	0.77	0.00			26300	86.55	4.79	0.19	ļ		10900	/1.2/	3.27	0.00
		6700	43.76	1.13	0.00			54400	79.08	9.49	0.41			2/2000	34 45	10.75	0.22
		9900	28.98	1.20	0.00			00868	/0.9/	19.17	0.00	1		46500	24.45	12.46	0.29
		13000	19.70	1.54	0.00			119700	59.01	18.19	0.83	1		\$7900	17 10	13.01	0.34
		10500	12.92	1.40	0.00			170700	51.04	20.01	1.23			72400	11 23	14.14	041
		19500	8.72	1.50	0.00			200000	47.61	25.80	1 37	1		/2100			0.11
150 71	0.02271	٥	00 75	0.25	0.00			210000	44 43	26.83	1.57	159.87	0.000449	0	99.49	0.51	0.00
150.71	0.022/1	4200	64.00	0.25	0.00			*1 ,000						11900	73.38	5.74	0.17
		7300	47 45	1 26	0.00	159.82	0.02762	0	99.39	0.61	0.00			25100	54.91	10.12	0.33
		10800	32.03	1.31	0.00	1	0.02702	1600	68.53	1.15	0.00	[39100	41.06	12.81	0.45
		14600	22.75	1.42	0.00			3200	46.52	1.81	0.00			52200	31.10	15.08	0.53
		18300	15.21	1.62	0.00			5000	30.82	1.85	0.00			66300	23.21	16.85	0.61
		23500	8.93	1.62	0.00			7100	18.74	1.99	0.00			81600	17.32	18.32	0.68
												[
150.66	0.01715	0	99.76	0.25	0.00	159.82	0.02772	0	99.39	0.61	0.00	159.87	0.000191	0	99.55	0.45	0.00
		4300	70.79	0.82	0.00			1400	70.76	1.13	0.00			24900	65.87	10.80	0.39
		8700	49.30	1.31	0.00			2700	51.89	1.68	0.00			38500	53.69	14.94	0.59
		13000	34.79	1.78	0.00			4100	37.47	1.58	0.00	1		57700	40.59	18.04	0.78
		17300	24.33	1.73	0.00			5400	27.61	1.72	0.00			84300	27.64	22.88	0.96
		21600	17.30	2.01	0.00			6700	20.31	1.97	0.00]		113700	18.30	24.46	1.24
		25900	12.02	2.04	0.00			8000	14.85	2.14	0.00			151000	11.26	27.22	1.41
									~ ~ ~			100 07	0.000075	•	00.62	0.47	0.00
150.66	0.01165	0	99.76	0.24	0.00	159.82	0.02218	0	99.42	0.58	0.00	159.87	0.000025	21100	99.55	12.02	0.00
		7200	65.58	1.21	0.00			1300	76.98	1.31	0.00			51100	/0.01	12.92	0.05
		14600	41.93	1.80	0.00			2600	59.55	1.61	0.00			04000	38.10	24.00	1.50
		20/00	29.26	2.25	0.00			3900	45.80	1.72	0.00			115700	40.39	25.93	2.00
		27400	19.80	2.44	0.00			5200	35.62	2.13	0.00	1		144000	39.33	40 34	2.00
		33400	13.80	2.00	0.00			0900	25.70	2.14	0.00			170200	27 32	42.34	2.20
		33300	9.99	2.08	0.00			8/00	18.17	2.59	0.00			197300	22.92	45 13	2.49
150.66	0.005652	0	99 78	0.22	0.00	150.82	0.01662	0	98 94	1.06	0.00			171300		-5.15	2.01
150.00	0.000002	42300	22.49	3.48	0.00	137.02	0.01002	2200	70.37	1 35	0.00	171.49	0.02712	0	97.60	240	0.00
		55700	13.70	3.89	0.00			4200	51.61	1.88	0.00			2900	21.13	5.27	0.00
		84400	5.15	4.23	0.00			6400	37.18	2.26	0.00			3700	14.03	5.31	0.00
								8500	26.90	2.52	0.00			4700	8.94	5.39	0.00
150.66	0.002864	0	99.82	0.18	0.00			10600	19.50	2.97	0.00						
		29800	47.92	3.38	0.00			12800	13.35	2.64	0.00	171.49	0.02160	0	97.89	2.11	0.00
		59800	22.97	4.99	0.00									700	72.47	3.03	0.00
		87700	11.44	5.59	0.00	159.87	0.01111	0	99.48	0.52	0.00			1500	51.13	4.06	0.00
		113500	6.09	5.42	0.00			3100	71.16	1.67	0.00			2300	36.84	4.63	0.00
								6200	50.94	2.50	0.00			3100	25.85	5.27	0.00
150.61	0.001304	0	99.89	0.11	0.00			9300	35.20	2.95	0.00			3900	18.73	5.61	0.00
		20400	67.68	3.48	0.00			12400	25.20	3.50	0.00			4700	12.97	5.03	0.00
		43100	44.80	6.00	0.00			15600	17.61	3.76	0.00						
		61100	32.11	6.43	0.00			18600	12.55	3.76	0.00	171.49	0.01641	0	97.97	2.03	0.00
		80300	22.66	7.81	0.17									800	73.30	3.15	0.00
		98400	16.18	8.83	0.19	159.85	0.005538	0	99.62	0.38	0.00	1		1/00	54.32	3.98	0.00
		104000	14.84	8.11	0.17			4700	69.45	1.97	0.00			2600	40.04	4.51	0.00
		118900	11.26	8.40	0.24			9500	50.15	3.07	0.00			3300	29.82	5.11	0.00
		•	100.00	0.00	0.00			14000	37.18	3.98	0.00			4400	21.93	5.04	0.00
150.61	0.000099	17000	67.40	4.61	0.00			18/00	26.95	4.54	0.00			5500	10.59	J.74	0.00
		\$2100	47.49	4.01	0.00			25500	19.50	5.05	0.00	171 40	0.01110	٥	08 36	1.64	0.00
		78000	33.40	8.05	0.15			20400	13.67	5.40	0.00	171.47	0.01110	800	80.65	2.75	0.00
		102500	23 54	9.93	0.29	159.87	0.002905	0	99.60	0.40	0.00			2000	59.73	4.01	0.00
		103300	23.67	10.37	0.31	139.07	0.00270.7	6300	71.20	2.40	0.00			4400	33.00	5 50	0.00
		130800	16.55	11.46	0.34			15000	45 71	2.47 A AA	0.00			5600	24 37	5.00	0.00
		154100	11.88	11.43	0.35			22400	32.07	5.68	0.10			6800	18 25	643	0.00
								29100	23.50	6.69	014			0000	10.25	0.45	0.00
150.61	0.000422	0	100.00	0.00	0.00			36300	16.95	7.24	0.14	171.49	0.005490	0	98.52	1.48	0.00
		33600	69.47	5.76	0.17							1		800	86.51	2.45	0.00
		59600	53.28	7.86	0.29	159.85	0.002846	0	99.52	0.48	0.00			3800	54.16	5.12	0.13
		87300	40.29	10.78	0.40	1		3300	84.41	1.74	0.00	l		6700	34.80	6.80	0.14
		117400	29.45	12.52	0.44			16200	44.52	4.77	0.15	Ì		9600	21.94	7.45	0.18
		144600	22.34	13.77	0.51			23900	30. 95	6.01	0.18			12700	13.85	8.46	0.26
		176000	16.31	14.75	0.53			32300	21.35	7.35	0.22			15400	9.02	8.27	0.25
		207400	12.15	15.05	0.58			40000	14.39	7.08	0.20						-
150 61	0.000014	Λ	00.70	0.21	0.00			49000	9.63	7.66	0.23	171.49	0.002837	0	98.46	1.54	0.00
10.01	0.000210	27000	77.17 77 06	0.21	0.00	1.50.07	0.001222	~	oc - ·		c			18100	14.88	11.40	0.31
		40000	64 04	4.8.5	0.19	159.87	0.001323	0	99.54	0.46	0.00	1		22600	9.37	12.10	0.35
		81000	52.00	0.20	0.30			/800	72.75	.5.85	0.00	ì		27200	5.77	11.38	0.35
		108600	41 03	12 05	0.44			10300	36.27	7 00	0.17						
		139700	33 21	15.66	0.64	l		20300	20.87	7.87	0.22	1					
		170100	26 92	16 49	0.71			40200	16 11	9.75	0.27						
		199400	21.05	18.08	0.76			59700	10.51	11.06	0.11						
											···· ·	1					

Tab. 7 (Fortsetzung)

Temp	Sauerstoff	Zeit	5	4	6 + 7	Temp	Sauerstoff	Zeit	5	4	6 + 7	Temp	Sauerstoff	Zeit	5	4	6 + 7
(۳)	[moi 1-1]	[5]	[%]	[%]	[%]	[C"]	[mol]-1]	[8]	- [%]	(%)	[%]	(C1)	[mol 1-1]	[s]	[%]	[96]	[%]
171 49	0.001417	0	98.66	1 34	0.00	181.00	0.001889	0	96.04	3.06	0.00	100.96	0.001488	0	91.14	8.65	0.21
171.42	0.001417	4300	68.52	6.60	0.00	101.00	0.001889	1900	65.22	875	0.00	150.50	0.001400	900	67.92	16.01	0.40
		9500	44.65	11.02	0.34			3700	46.32	11.94	0.37	1		1900	49.79	20.16	0.56
		15300	27.31	13.94	0.41			5600	33.02	15.44	0.44			2700	37.35	22.07	0.63
		19200	19.73	15.15	0.43			7700	22.68	17.02	0.49			3500	29.04	25.13	0.76
		23500	13.74	15.66	0.46	1		9500	16.71	18.44	0.56			4300	22.78	26.20	0.79
		28200	9.56	16.64	0.50	· ·		11500	11.84	19.03	0.57	ļ		5100	17.78	27.53	0.82
171.49	0.000793	0	98.57	1.43	0.00	181.00	0.000800	0	96.48	3.52	0.00			5700	10.74	1 7. 7 .	0.00
		5400	69.12	8.42	0.28			2800	66.01	11.51	0.39	190.96	0.000626	0	91.28	8.43	0.29
		10300	49.43	12.39	0.39			6800	40 .04	18.86	0.65			1400	61.63	17.28	0.64
		16100	33.99	15.37	0.50			9700	27.68	22.29	0.79			2800	43.42	23.87	0.92
		22000	23.38	18.25	0.62			12600	19.64	24.43	0.92			4200	31.56	28.04	1.17
		27400	10.53	19.72	0.00			15400	13.90	25.70	1.00			5500	23.03	29.72	1.41
		33000	11.04	21.22	0.71			16200	10.22	20.19	1.00			8300	13.26	33.93	1.62
171.49	0.000351	0	98.62	1.38	0.00	181.00	0.000338	0	96.87	3.13	0.00						
		6300	70.37	9.04	0.32			3600	69.04	13.98	0.52	190.96	0.000586	0	91.15	8.62	0.23
		13100	50.90	14.77	0.57	1		7300	48.88	21.70	0.84			1500	62.87	19.33	0.57
		21300	35.00	19.95	0.79			11000	34.58	27.00	1.27			2900	44.12	24.96	0.78
		27600	26.70	22.64	1.04			14800	24,93	30.91	1.40			4300	31.32	29.08	0.99
		34000	19.49	25.10	1.17			22300	13.50	32.99	1.59			7100	16.82	31.99	1.19
		41000	14.52	20.40	1.20	[22.500	15.50	55.54	1.07			8700	12.09	34.73	1.48
171.49	0.000149	0	98.65	1.35	0.00	181.00	0.000162	0	96.83	3.17	0.00			10400	8.82	35.17	1.57
		7200	74.04	10.82	0.40			4400	68.96	16.36	0.68						
		17600	51.85	20.14	0.85			9300	48.81	26.61	1.17	190.96	0.000248	0	92.81	6.93	0.26
		27900	36.95	27.04	1.32			14600	33.88	34.23	1.78			1800	65.33	19.12	0.84
		39600	25.30	30.83	1.59			19500	24.65	39.35	2.06			3600	47.99	29.54	1.44
		50400	18.50	34.73	1.75	ļ		24500	18.26	40.93	2.26			5400	34.89	35.25	1.75
		61500	13.40	33.65	1.95			29700	15.00	41.70	2.40	[7300	25.50	39.31	2.00
171 40	0.000036	0	98 64	1 36	0.00	183.00	0.000036	0	96.92	3.08	0.00			11000	14.90	41.04	2.20
171.47	0.000050	16800	66.74	21.33	1.05	100.00	0.000000	5200	71.69	18.52	0.88				14.70	.5.04	2.40
		34900	47.84	36.60	2.07			10400	56.30	30.86	1.67	190.96	0.000250	0	90.60	9.12	0.28
		53100	34.72	45.49	2.58			15500	43.77	39.35	2.22			2100	61.54	22.86	0.89
		75000	24.37	53.53	3.24	1		20600	35.25	45.60	2.70			4300	41.42	31.60	1.48
		89700	19.80	56.15	3.57	ł		26600	27.37	50.56	3.02			6400	28.70	37.57	1.84
		108000	16.01	57.76	3.88			32800	21.92	55.23	3.37			8500	20.47	40.71	2.07
101.10	0.004.47	•	02.02	6 00	0.00	1	0.01000	•	00.42	0.67	0.00			10600	15.05	41.62	2.28
181.10	0.02647	900	93.02	0.98	0.00	191.01	0.01293	800	90.45	9.57	0.00			12600	11.40	43./1	2.40
		1600	20.81	9.82	0.00	1		1600	18.75	15.01	0.19	190.96	0.000171	0	92.29	7 45	0.26
		2400	10.09	9.88	0.00	1		2400	8.88	15.54	0.21		0.000171	800	80.16	13.09	0.58
														1630	69.84	19.06	0.85
181.10	0.02114	0	94.55	5.45	0.00	191.01	0.01048	0	91.47	8.53	0.00			3100	55.69	27.48	1.40
		700	54.86	7.35	0.00			800	46.76	12.94	0.10			4800	43.02	34.38	1.80
		1500	29.11	8.35	0.00			1600	23.59	14.52	0.19			6700	33.12	40.23	2.21
		2300	8.78	8.99	0.00			3200	6.31	14.96	0.19			10000	20.52	45.91	2.41
		5100	0.70	0.77	0.00									10000	21.10	-5.71	2.01
181.10	0.01598	0	95.93	4.07	0.00	191.01	0.007934	0	91. 99	7.87	0.13	190.96	0.000117	0	89.97	9.65	0.38
		800	57.44	6.10	0.00	1		800	51.86	12.31	0.19			1700	69.35	21.91	0.97
		1600	35.28	7.33	0.00			0001	29.41	14.69	0.17	1		4100	49.24	33.93	1.76
		2100	25.61	7.77	0.00			2400	16.92	15.68	0.28			6500	35.14	42.19	2.31
		2900	15.90	8.20	0.00			4000	9.65	10.38	0.32			0900	19.50	40.71	2.03
		5700	9.01	0.40	0.00			-000	5.71	13.04	0.55			13500	15.46	51.51	3.16
181.10	0.01066	0	96.45	3.55	0.00	191.01	0.005371	0	92.79	7.10	0.11						
		700	70.48	5.68	0.13	1		800	59.03	11.99	0.22	190.96	0.000023	0	92.19	7.45	0.36
		1500	48.38	7.14	0.16			1600	37.55	14.88	0.32			2300	70.33	24.40	1.22
		2300	33.48	8.23	0.17			2400	24.28	17.08	0.35			4900	53.32	38.93	2.22
		3100	23.33	8.87	0.14			3200	15./5	17.90	0.39			10000	20.20	49.73	3.00
		3900	10.29	9.50	0.19			4000	6.82	18.02	0.40			13700	29.75	60.43	3.47
		4700	11.47	77	0.10	ľ		4000	0.02	10.01	0.44]		16800	19.84	64.40	4.33
181.10	0.005376	0	96.61	3.39	0.00	191.01	0.002759	0	93.70	6.14	0.15						
		1300	64.97	6.54	0.15			800	67.10	11.69	0.26						
		2800	43.00	9.45	0.21			1600	49.25	16.32	0.36						
		4200	28.24	10.83	0.25			2400	34.48	17.37	0.40						
		5700	18.15	11.44	0.26			3200 4000	23.03	18.90	0.45						
		7200	7.80	12.33	0.29			4800	13.54	20.31	0.52						
		0,00	7.00		0.29			-300	15.54	£0.30	0.54						
181.10	0.002834	0	96.57	3.35	0.08	191.01	0.001732	0	94.40	5.47	0.13	ļ.					
		2700	54.96	9.50	0.26	l		2000	46.40	16.43	0.47						
		5600	30.38	13.61	0.42	1		3000	32.85	18.80	0.55	1					
		6200	1/./3	13.20	0.51			4000	23.89	21.25	0.62	ŀ					
		13600	5.96	15.59	0.53			6000	12.75	23 30	0.06	1					
		16400	3.64	15.46	0.28						0						

Beobachtung, daß beim Phenylderivat 5 auch der orthogonale Triplett-Zustand 8t zugänglich ist, läßt fragen, warum die Thermolyse von 5 keinen Hinweis auf den Prozeß einer Rotation $8t \rightarrow 15t$ gibt. Der für den Grundkörper berechnete Energiegewinn für eine solche Umlagerung von 15 kcal mol⁻¹ (s. Tab. 1) sollte für das Phenyl-substituierte Diradikal wesentlich kleiner sein. Während im orthogonalen Diradikal **8** die volle Benzylstabilisierung von 10.5 kcal mol^{-1[24]} wirksam wird (s. oben), dürfte der Substituenten-Effekt im planaren Diradikal auf wenige kcal mol⁻¹ schrumpfen. Wie der Vergleich von Allyl- und Cinnamyl-Stabilisierung (13.5^[24] vs. 17.4^[27] kcal mol⁻¹) zeigt, fällt die Stabilisierungsenergie ungepaarter Elektronen bei Vergrößerung des π -Systems schnell ab.

Darüber hinaus kommt es in 15 zu einer substantiellen sterischen Behinderung zwischen Phenylgruppe und dem cisoiden Methylenwasserstoff. Aber selbst wenn man unterstellt, daß die Phenylgruppe zum Abbau dieser Wechselwirkung vollständig aus der Ringebene gedreht wird (15'), dann sollte der Übergang $8t \rightarrow 15't$ nach wie vor exotherm $(15.2 - 10.5 = 4.7 \text{ kcal mol}^{-1})$ sein. Die Möglichkeit einer Überschätzung der Stabilisierung des planaren Triplett-Zustandes wird damit nahegelegt. Die Bildung von 15t hätte Anlaß zur Bildung von Dimeren geben sollen und steht auch in direktem Widerspruch zu den Sauerstoff-Abfang-Experimenten. Der nichtlineare Verlauf der Abfangkurve (Abb. 1) begrenzt die Energiedifferenz der im Gleichgewicht stehenden Diradikale auf Werte $< 2 \text{ kcal mol}^{-1}$.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit durch Sachmittel.

Experimenteller Teil

1. Kinetische Messungen wurden mit der in Lit.^[32] beschriebenen Apparatur und mit der dort angegebenen Meßtechnik vorgenommen. Die Auswertung erfolgte in den Fällen, in denen keine Geschwindigkeitskonstanten angegeben werden, durch Simulation, wobei die gesuchten Aktivierungsparameter direkt mit einer Simplex-Routine^[7] an den jeweils alle Temperaturen umfassenden Satz der Meßdaten der Tabellen 6 bzw. 7 angepaßt wurden.

2. Hydrierwärme-Messungen erfolgten mit der in Lit.^[18] beschriebenen Apparatur und der dort angegebenen Methode. Als Lösungsmittel wurde Isooctan und als Katalysator Pd/C (5%) verwendet. Bei der Auswertung wurde der Wasserstoffwert zugrundegelegt. Die in Tab. 8 angegebenen Werte sind um Lösungswärme-Effekte korrigiert^[33], nicht jedoch um die Differenz der Verdampfungswärmen von Edukt und Produkt.

$$\begin{array}{c} Ph \\ H \\ H \end{array} \xrightarrow{H_2} Pd/C \\ \hline 5 \\ 16 \\ 17 \\ 18 \end{array} Ph-(CH_2)_3 CH_3 + Ph-CH_2 -CH(CH_3)_2 + Ph-CH(CH_3) - C_2H_5 \\ \hline 16 \\ 17 \\ 18 \\ \hline \end{array}$$

Bei der Hydrierung von 5 wird ein Gemisch der Phenylbutane 16-18 erhalten. Die in der letzten Spalte der Tab. 8 angegebenen Hydrierwärmen beziehen sich auf die Reaktion $5 \rightarrow 16$. Für die Umrechnung wurden benutzt: $\Delta H_{f}^{0}(16) = -3.28 \text{ kcal mol}^{-1[34]};$ $\Delta H_{\rm f}^0(17) = -5.14 \text{ kcal mol}^{-1[34]}; \Delta H_{\rm f}^0(18) = -4.15 \text{ kcal mol}^{-[34]}.$

3. Kristallstruktur-Analysen^[35]: Die Strukturbestimmungen von 4 und 5 erfolgten mit einem Nicolet-R3m/V-Vierkreisdiffraktometer

mit Graphit-monochromatisierter Mo- K_{α} -Strahlung $(\lambda =$ 0.71069 Å). Die Kristallzucht erfolgte auf dem Diffraktometer bei 251 K (4) bzw. 232 K (5) mit einem Miniatur-Zonenschmelzverfahren mit fokussierter Infrarotstrahlung nach Brodalla et al.^[36]. Die Zellbestimmung erfolgte aus 50 bzw. 30 Reflexen im Bereich 20° $< 2\theta < 25^{\circ}$ bzw. $15^{\circ} < 2\theta < 25^{\circ}$ (s. Tab. 9).

Tab. 8. Daten der Hydrierwärme-Messungen von 5

Titr ^{a)} geschw.	Kataly. ^{b)}	H ₂ - ^{c)} Verbr.	Energie ^{d)}	- $\Delta H_{H}^{e, f)}$	- $\Delta H_{H}^{e,g,h)}$
0.7454	0.0698	0.1493	5.5689	74.60	
0.7470	0.02313	0.1482	5. 5419	74.79	
0.7232	0.0705	0.1449	5.4084	74.65	
0.7480	0.0698	0.1478	5.5115	74.58	
0.7491	0.0725	0.1501	5.6062	74.70	
					74.14±0.21

^{a)} $[mol \cdot s^{-1} \cdot 10^7]$, $-^{b)} [g]$, $-^{c)} [mol \cdot s^{-1} \cdot 10^6]$, $-^{d)} [mcal \cdot s^{-1}]$, $-^{e)} [kcal \cdot mol^{-1}]$, $-^{b)} 16$; 64.69%, 17; 31.47%, 18; 3.84%, $-^{g)}$ Korrigiert um Lösungsmittel-Effekte. $-^{b)}$ Bezogen auf $5 \rightarrow 16$.

Tab. 9. Zellparameter von 4 und 5

	4	5		4	5
a [Å]	5.580 (2)	5.847 (2)	V [Å ³]	373.6 (2)	1545 4 (7)
b [Å]	6.968 (2)	17.075 (5)	z	2	8
c [Å]	10.386 (3)	15.478 (5)	dher [g/cm ³]	1.157	1.119
α[°]	102.64 (2)	90	Raumgruppe	ΡĪ	P bca
Brei	95.21 (3)	90			-
χ [°]	106.08 (2)	90	1		

Die Datensammlung bei 130 bzw. 200 K ergab 1704 bzw. 1012 unabhängige Reflexe, von denen 1531 bzw. 700 als beobachtet behandelt wurden $[F_{o} > 4\sigma(F)]$. Die Auswertung erfolgte mit SHELXTL-PLUS auf einem Micro-VAX II-Rechner. Die Differenz-Fourier-Synthese auf der Basis des endgültigen Strukturmodells zeigte ein Maximum von 0.195 e/Å³ [0.81 Å von C(6)] bzw. 0.287 e/Å^3 und ein Minimum von $-0.301 \text{ bzw.} -0.175 \text{ e/Å}^3$. Die *R*-Werte betrugen für 4 R = 0.0412 und $R_w = 0.0447$ {w⁻¹ = $[\sigma^{2}(F_{0}) + 0.0002 F_{0}^{2}]$ für 125 Parameter sowie für 5 R = 0.0532und $R_w = 0.0527 \{ w^{-1} = [\sigma^2(F_0) + 0.0002 F_0^2] \}$ für 101 Parameter. Die Atomfaktoren wurden nach SHELXTL und nach Cromer^[37] berechnet, die Korrekturen für anomale Dispersionen nach Cromer et al.^[38].

- ^[1] W. v. E. Doering, H. D. Roth, Tetrahedron 1970, 26, 2825.
- ^[2] R. B. Woodward, R. Hoffmann, Die Erhaltung der Orbitalsymmetrie, Verlag Chemie, Weinheim 1970.
- ^[3] W. v. E. Doering, L. Birladeanu, *Tetrahedron* 1973, 29, 499.
 ^[4] D. A. Dixon, T. H. Dunning, Jr., R. A. Eades, D. A. Kleier, J. Am. Chem. Soc. **1981**, 103, 2878.
- ^[5] P. Dowd, Acc. Chem. Res. 1972, 5, 242; P. Dowd, M. Chow, J. Am. Chem. Soc. 1977, 99, 6438.
- ¹⁶¹ S. Arora, P. Binger, Synthesis 1974, 801; R. Noyori, H. Takaya, Y. Nakanisi, H. Nozaki, Can. J. Chem. 1969, 47, 1242.
- ^[7] S. N. Demming, S. L. Morgan, Anal. Chem. 1973, 45, 278A.
- ^[8] W. R. Roth, O. Adamczak, R. Breuckmann, H.-W. Lennartz, R. Boese, Chem. Ber. 1991, 124, 2499.
- Boese, Chem. Ber. 1371, 127, 1777. [9] ΔH_1^0 (Benzol) 19.81 + ΔH_1^0 (Ethen) 12.45 ΔH_1^0 (Styrol) 35.30 = 3.04 kcal mol⁻¹; ΔH_1^0 (Benzol) 19.81 + ΔH_1^0 (Cyclopropan) 25.02 3.43 kcal mol⁻¹ - $12.73 - \Delta H_{\rm f}^0$ (Phenylcyclopropan) 35.93 = 3.43 kcal mol⁻ ΔH_1^0 (Benzol) 19.81 + ΔH_1^0 (*n*-Propan) (-)24.83 - ΔH_1^0 (Isopropylbenzol) 0.96 = 5.98 kcal mol⁻¹^[8].
- [10] Wir danken Herrn Dr. F. Scheidt, Bochum, für die Hilfe bei der Enantiomeren-Trennung.
- ^[11] W. R. Roth, F. Bauer, R. Breuckmann, Chem. Ber. 1991, 124, 2041.

- ^[12] W. R. Roth, M. Winzer, Publikation in Vorbereitung. ^[13] Berechnet mit: $Z_{1J} = N_A \sigma_{AM}^2 (8RT/\pi\mu)^{1/2} \Omega_{AM}^{(2,2)*[14]}$ mit: $\sigma(O_2) = 3.6 \text{ Å}^{[14]}$; $\sigma(5) = 6.9 \text{ Å}$ (abgeschätzt aus Modellen). Für die Berechnung der Geschwindigkeit wurde die Stoßzahl noch mit 1/27 multipliziert, ein Faktor, der die Spinstatistik (1/9) sowie die Beobachtung von Wirtz^[15] berücksichtigt, daß in Lösung im Mittel nur jeder dritte "Singlet-Encounter-Complex" zum Produkt führt.
- ^[14] J. Troe, J. Chem. Phys. 1977, 66, 4758.
- ^[15] J. Wirtz, E. Asler, E. Gassmann, Helv. Chim. Acta 1985, 68, 777.
- [16] J. A. Nelder, R. Mead, Comput. J. 1965, 7, 368.
 [17] M. Menzinger, R. L. Wolfgang, Angew. Chem. 1969, 81, 446;
- Angew. Chem. Int. Ed. Engl. 1969, 8, 438.
- ^[18] W. R. Roth, H.-W. Lennartz, Chem. Ber. 1980, 113, 1806.
- ⁽¹⁹⁾ $\Delta H_{f}^{\circ}(5) = \Delta H_{f}^{\circ}(16) \Delta H_{H}(5 \rightarrow 16) = -3.28 + 74.14 = 70.9$ kcal mol⁻¹.
- ^[20] W. v. E. Doering, W. R. Roth, R. Breuckmann, L. Figge, H.-W. Lennartz, W.-D. Fessner, H. Prinzbach, Chem. Ber. 1988, 121.1.

- ^[23] W. v. E. Doering, W. R. Roth, F. Bauer, M. Boenke, R. Breuckmann, J. Ruhkamp, O. Wortmann, Chem. Ber. 1991, 124, 1461 - 1470
- ^[24] H. Hippler, J. Troe, J. Phys. Chem. 1990, 94, 3803.
- ^[25] W. R. Roth, V. Staemmler, M. Neumann, C. Schmuck, Publikation in Vorbereitung. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J.
- [26] Am. Chem. Soc. 1985, 107, 3902.

- ^[27] Ermittelt von M. Herbold aus der Rotationsbarriere des trans-3,4-Diphenyl-1,2,5-hexatriens von ΔH^+ = 29.86 kcal mol⁻ und der Differenz der sterischen Energien von Grund- und Übergangszustand.
- [^{28]} J. C. Gilbert, J. R. Butler, J. Am. Chem. Soc. 1970, 92, 2168.
 [^{29]} M. J. S. Dewar, J. S. Wasson, J. Am. Chem. Soc. 1971, 93, 3197.
- ^[30] D. R. Yorkung, H. F. Schaefer III, J. Am. Chem. Soc. 1974, 96, 3754
- ^[31] J. D. Davis, W. A. Goddard III, J. Am. Chem. Soc. 1977, 99, 4242.
- ^[32] W. Grimme, L. Schumachers, W. R. Roth, R. Breuckmann, Chem. Ber. 1981, 114, 3197.
- ^[33] W. R. Roth, H.-W. Lennartz, W. v. E. Doering, W. R. Dolbier
- Jr. J. C. Schmidthauser, J. Am. Chem. Soc. 1988, 110, 1883.
 [^{34]} J. B. Pedley, R. D. Naylor, S. P. Kirby, Thermochemical Data of Organic Compounds, Chapman and Hill, London, 1986.
- ^[35] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-400372 (4) und CSD-400373 (5), der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[36] D. Brodalla, D. Mootz, R. Boese, W. Oßwald, J. Appl. Crystallogr. 1985, 18, 316.
- ^[37] D. T. Cromer, J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
- ^[38] D. T. Cromer, D. Lieberman, J. Chem. Phys. 1970, 53, 1891.

[260/93]